

Tickets

User guide

Table of contents
I. Introduction ... 3

Dashboard ... 3

Integration in Signifikant Web Viewer .. 3

II. User guide.. 5

1. Getting ready ... 5

Settings .. 5

Add a ticket template file .. 5

Content of a ticket template file ... 5

2. Create a ticket template .. 6

Dashboard integration .. 7

3. Add components ... 7

Additional options ... 8

Dashboard option .. 8

Component behavior ... 9

Component validation ... 9

4. Usage in the Web Viewer .. 10

5. In depth: predicates and actions ... 11

Using component name inside the same component .. 11

Differences between predicates, actions and functions ... 11

Combining predicates .. 12

C-style predicates .. 13

Math operators, comparison operators .. 13

Common mistake with comparison operators .. 14

Several actions, dual actions ... 15

6. CSS customization ... 16

Example of CSS definition .. 16

CSS file ... 16

Default CSS classes .. 16

Generated CSS classes ... 17

I. Introduction

 This document explains how to integrate and customize JIRA™ Atlassian tickets in Signifikant

Web Viewer. It provides general information on how to configure the Web Viewer to enable the

ticket functionality and how to create, customize, and use tickets.

 This document is complemented by the Wiki.

Dashboard
 A dashboard is a centralized system allowing activity tracking. In all this document, the

dashboard will be JIRA (a web application) since it is the system currently supported by the Web

Viewer, but all the information explained will apply to whichever dashboard.

JIRA is initially used in software development and provides bug tracking, issue tracking and

project management functions. It is generic enough to be used in all kinds of activities.

In a JIRA ticket, it is possible to

create tasks, describe and

comment them, assign people, set

a level of priority, get mail alerts

on changes, and many others.

Lots of ticket types can coexist and

can be configured to have the

fields that correspond to the

needs.

For example, manufacturers and

resellers can use them to order

new parts, retrieve feedback from

different workers, make warranty

claims, etc…

The issue can then be dealt by the

appropriated area of the company.

Integration in Signifikant Web Viewer
The ticket functionality in the Web Viewer allows the end-user to create and update JIRA

tickets directly in the Web Viewer according to templates written as XML files, which describe how

the ticket should appear and behave in the Web Viewer.

In the end, these XML files describe dynamic web forms whose contents are converted into

appropriate dashboard tickets. These tickets can then be viewed and updated at will from the Web

Viewer or from JIRA directly.

 Signifikant tickets are easy to use and highly customizable. Many fields are available and can

interact with each other when described conditions are met. The tickets validation can also be

customized as well as their visual aspect, with CSS descriptions.

Signifikant ticket

JIRA ticket

II. User guide
1. Getting ready

Settings
To allow ticket creation, modification, and the viewer access (ability to read tickets already

created) from the Web Viewer, proper configuration is needed in the root of profile.config as shown

below:

Add a ticket template file
Ticket templates are defined inside one or several XML files: each file can contain as many

templates as wanted. Each ticket file can be imported in the Web Viewer by adding their respective

path in the root profile.config as shown below:

Content of a ticket template file

 A ticket file must define an AllTickets tag in which a succession of Ticket tag occurs:

2. Create a ticket template

 A ticket is a form that consists of fields called components. Each ticket must have a unique

name and can have as many components as wanted whose content can potentially be stored in the

generated JIRA ticket.

Such a ticket template is defined as:

 Components are described in the later section 3. Add components.

Dashboard integration
 To indicate which dashboard system the ticket is bonded with, we add a tag called

DashboardIntegration:

We recommend this syntax for such an important tag:

 From now, only the dashboard JIRA is supported, but in the future others such as Windchill

will have support too.

 To configure a JIRA project in the Web Viewer, these settings must be added to the root of

profile.config:

 By default, the ticket generated in JIRA will be a Task whose summary starts with

[MyTicketName]. You can generate your own JIRA ticket by adding the name of the JIRA ticket with

the tag Type:

3. Add components

 Components are simple and various fields which can be added in a ticket. They can be either

a textbox, a checkbox, a slider, and many others, even a component to send mail !

 Each component inside a ticket must have a unique one-word name which acts as an id, and

a type that describes what the component is:

Such a component will display as:

All the types that can be used are listed in the Wiki.

Additional options
 Each component, depending on their type, has a specific number of additional options that

can be used for customization. For example, the component type TextBox has the option Default

that sets the initial text inside the textbox.

 Also, most of the components are displayed with their name first, and since it is a one-word

name, the option DisplayedName exists to be able to display a friendlier name:

Displays as:

Once again, all the options available for a component type are listed in the Wiki.

Dashboard option

 To describe which component content must be in the JIRA ticket and where it should be, we

use the option Dashboard:

Without this option, the component will not be exported. Such components are most likely

checkboxes or buttons whose purpose is to interact with other components.

 An infinity of components can have the dashboard option Body (and will be exported in the

main body of the JIRA ticket). Other dashboard options such as Summary can only be taken by one

component.

 Custom fields can also be added in JIRA. To describe which component is bonded to them, we

use the dashboard option Custom:MyField (where MyField is the JIRA field name):

Component behavior

 Behaviors are used to make components change under described conditions. They are used

by adding Behavior tags in a component, composed of sub-tags Predicate and Action:

In this example, the text hello will be displayed in the textbox when the checkbox is checked.

 Component functions are used using the syntax ComponentName.Function(Arg1, Arg2, …).

 Every component has its own predicate and action functions depending on its type. It is

meant to be as versatile as possible, see the section 4. In depth: predicates and actions to see how

predicates and actions can be used. As many behaviors as wanted can be added.

Component validation

 To check whether a ticket is valid before sending it in JIRA, components can have Validation

tags with Predicates and an associated Message:

In this example, the textbox must contain some text for the ticket to be validated.

As many validations as wanted can be added.

4. Usage in the Web Viewer

 Once tickets are enabled in the Web Viewer and some templates are added to profile.config,

tickets can be added using the tool bar:

 Created tickets can then be accessed in the top-right dropdown list:

 The user will then be redirected to a list of its created ticket. Clicking on an element of the list

will allow to edit the ticket.

5. In depth: predicates and actions

Using component name inside the same component
 Using the name of a component where the predicates and actions are, is optional. For

example, this means these two behaviors are equivalent:

It is also notable that behaviors and validations don’t necessarily need to be in their

corresponding component. Having all of them inside one component is possible, even though it is not

recommended.

Differences between predicates, actions and functions

 A predicate is an expression that can be evaluated as a final result which can be either

true or false. A Predicate tag must contain an expression that converts into true or false.

 An action is a function of a component that modify the component state and doesn’t

return a value. Action can only be used inside an Action tag.

 A function returns a value of a component that can be used inside a predicate or as

arguments in another function or action.

Combining predicates
 Predicates can be combined using And, Or, Equal and Not (in behaviors or validations):

Here, the action will be executed if p4 is true, or if p3 is true, or if p1 and p2 are true, which

can also be written (p4 or p3 or (p1 and p2)).

By default, when none of the tags And, Or and Equal are defined, the And tag is implicitly

used. Consequently, those two predicates are equivalent:

 The Equal tag is true when all its predicates have the same value: they must all be true or all

be false.

The Not tag is a special tag that invert a predicate result:

 Here, the action will be executed if (p1 and p2) is false, meaning that it won’t be executed

when p1 and p2 are both true (note that an implicit tag And is surrounding p1 and p2 in this

example).

C-style predicates
 Various predicate combinations can also be defined inside one predicate, using a C-style

language:

&& is equivalent to And (logical operator)

 || is equivalent to Or (logical operator)

 ! is equivalent to Not (logical operator)

 == is equivalent to Equal (comparison operator)

 != is equivalent to Not Equal (comparison operator)

These operators also have a priority evaluation order:

! > == , != > && > || where > means “has more priority than”.

Operators with the same priority will be evaluated from left to right.

You can also use parentheses to group predicates as shown above. Consequently, the above

predicate is equivalent to:

Math operators, comparison operators
 While predicates are essentially values that can be true or false, other operators exist to do

calculous and comparison between numbers:

Here, the predicate will be true if p1 is true and if the textbox has more than 3 characters in

its inner text.

Calculous can be used to calculate values to pass to functions in predicates and actions:

In this example, if the text in the textbox is “test”, the text displayed after the evaluation of

the action will be “hello9” (note that an implicit conversion occurred to append 9 at the end of the

string of characters “hello”, more info about operators, types and their conversion in the Wiki).

 Finally, all the operators available are:

&& and is equivalent to And (logical)

 || or is equivalent to Or (logical)

 ! not is equivalent to Not (logical)

 == equal is equivalent to Equal (comparison)

 != not equal is equivalent to Not Equal (comparison)

 > more than (comparison)

 >= more or equal (comparison)

 < less than (comparison)

<= less or equal (comparison)

* multiplication (math)

 / division (math)

 - minus (math)

 + addition (math)

These operators also have a priority evaluation order:

! > * , / > + , - > > , >= , < , <= , == , != > && > ||

 where > means “has more priority than”.

Operators with the same priority will be evaluated from left to right.

Common mistake with comparison operators
Here is a mistake commonly done while using comparison operators. This predicate is not

doing what is intended:

Instead, this predicate should be used:

Several actions, dual actions

 Several actions can be defined in a behavior. All the actions will be executed when the whole

predicate is true:

Actions can also be placed inside an Else tag. These actions will be executed when the whole

predicate is false. A common example of their usage is this one:

In this example, the checkbox will be checked if the textbox has some text inside it.

Some actions of a component are defined as dual actions, meaning they come as a pair: one

action does the opposite result of the other one. The actions Check() and Uncheck() are a good

example of dual actions.

 It is then possible to use the DualAction tag, meaning one action is executed when the whole

predicate is true and the associated dual action is executed when the whole predicate is false. Dual

actions are essentially syntactic sugar to make actions more concise.

 This behavior is exactly the same as the one shown above:

Dual actions can be placed in an Else tag, inverting the actions regarding the predicates, and

can also be present several times and coexist with regular actions.

6. CSS customization

Customization of tickets and components appearance is done with CSS style sheet. Tickets and

each of their components, depending on their type, have several options to apply CSS classes. All

possibilities are described in the Wiki.

Example of CSS definition
 To make it clearer, here is how the textbox component can be customized:

CSS file
All the classes are fetch from the shared style sheet Site.css.

 It is however possible to add another CSS file to separate the CSS logic: one ticket file and one

CSS file per ticket is a good way to go. To do so, the option CssPath can be added to the ticket with

the path of the file to load.

 When another file is added like this, the classes are fetch from this file first, and if they can’t

be found they are fetch from Site.css.

Default CSS classes
 Default CSS classes are applied to components and tickets. When a CSS class is given (like in

the example above), the default class is overridden and the given one is used.

 To disable all the default CSS classes, we can set the option DefaultCSS to false:

Generated CSS classes
 To avoid having the CSS definition in the ticket file, it is possible to use generated classes.

Those are CSS classes whose name is composed of the ticket and the component name:

 All useable generated classes are listed in the Wiki. They are created like so:

 .TicketName-ComponentName-CssOption

 Note that the default CSS option must be set to false to use these generated classes. It is

possible to combine generated classes and regular CSS options in the ticket file: if such an option is

defined, it will be used instead of the generated class:

It is possible to use the default CSS classes by using default in the chosen CSS option:

All the real class names associated with default are listed in the Wiki, so that it is possible to

inherit from them in CSS files.

